
KSH93 cool features for scripting

http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

KSH93 cool features for

scripting
- 6- Webographie -

Date de mise en ligne : lundi 30 novembre 2015

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) - Tous droits réservés

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 1/5

http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840
http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

KSH93 cool features for scripting

From time to time, I'm involved into a trolling conversation when any linux kiddie tells me :

Bash is really the superior shell

I totally disagree, but as I'm getting older, I don't argue anymore.

Anyway, in this post I will expose two arguments, or I should say two reasons, why I usually use ksh93 to run my
scripts.

Note I'm really talking about the engine of the script, (the shebang definition). set I'm used to the bourn shell syntax
therefore I also exclude any C shell from the comparison. My $SHELL for interactivity is zsh because it's efficient
enough and it has a bunch of really cool features I won't discuss in this post (maybe later)

 Read, loops, forks and efficiency...
More than 10 years ago, as I was working for a project at IBM, my excellent team leader told me to refer to this book :
Unix Power Tools . I did learn a lot with it.

And one feature I've always used is the while read loop.

 The use case
Let's take this script as example : $ cat test for i in $(seq 1 500) do echo $i | read a echo -ne "$a\r" done echo ""

It simply iterate 500 times and display the counter on the screen.

 The result of execution
Let's execute it in different shells for i in bash zsh ksh do echo "$i =>" eval $i test done bash => zsh => 500 ksh =>
500

Bash is the only one which does not display the expected result. The explanation is that the shell sees a pipe and the
fork the process. The assignation to the variable a is in another context and therefore, when the father wants to
display $a in the current shell, the variable is empty.

Wait, but why does ksh (and zsh) do display the correct result ? Simply because ksh and zsh have noticed that the
command after the pipe was a builtin, and therefore that it was un-useful to fork.

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 2/5

http://shop.oreilly.com/product/9780596003302.do
http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

KSH93 cool features for scripting

 Strace to the rescue...
To prove it, let's check for syscalls with the strace tool, and count how many clones and calls are performed : $ for i
in bash zsh ksh do echo "$i =>" strace -c $i test 2>&1 | egrep "clone|calls" done bash => % time seconds usecs/call
calls errors syscall 56.05 0.067081 67 1001 clone zsh => % time seconds usecs/call calls errors syscall 71.57
0.057681 115 501 clone ksh => % time seconds usecs/call calls errors syscall 68.50 0.042059 84 500 clone

quod erat demonstrandum, twice as much clone in bash thant in ksh|zsh.

 Efficiency
Of course this as an impact on performances, because fork are expensive, let's query the execution time : for i in
bash zsh ksh do echo "$i =>" eval time $i test done bash => bash test 0,17s user 0,86s system 95% cpu 1,079 total
zsh => 500 zsh test 0,08s user 0,46s system 82% cpu 0,648 total ksh => 500 ksh test 0,07s user 0,46s system 65%
cpu 0,819 total

This sounds clear to me...

 The KSH93 Getopts unknown feature
Another cool feature I've discovered recently is the little addon of the getopts feature.

I wanted to use the getopts built in in a script. As usual, I did RTFM (because I never know when to use colon etc.).

Here is the extract of the man page of ksh93 relative to the getopts function : getopts [-a name] optstring vname [
arg ...] Checks arg for legal options. If arg is omitted, the positional parameters are used. An option argument begins
with a + or a -. An option not beginning with + or - or the argument â€” ends the options. Options beginning with +
are only recognized when optstring begins with a +. optstring contains the letters that getopts recognizes. If a letter
is followed by a :, that option is expected to have an argument. The options can be separated from the argument by
blanks. The option - ? causes getopts to generate a usage message on standard error. The -a argument can be
used to specify the name to use for the usage message, which defaults to $0. getopts places the next option letter it
finds inside variable vname each time it is invoked. The option letter will be prepended with a + when arg begins with
a +. The index of the next arg is stored in OPTIND. The option argument, if any, gets stored in OPTARG. A leading :
in optstring causes getopts to store the letter of an invalid option in OPTARG, and to set vname to ? for an unknown
option and to : when a required option argument is missing. Otherwise, getopts prints an error message. The exit
status is non-zero when there are no more options.

There is no way to specify any of the options :, +, -, ?, [, and]. The option # can only be specified as the first option.

This particular sentence, in the middle of the documentation peaked my interest

The option - ? causes getopts to generate a usage message on standard error.

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 3/5

http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

KSH93 cool features for scripting

What ? We can generate usage with getopts ?

Cool, any script should be documented, but any documentation should not be difficult to implement.
[PNG - 16.8Â kio]

https://xkcd.com/1343/

I did googled and found this web page which is an extract from this book Learning the Korn Shell

An example is sometimes better than an explanation (and the book is complete on this subject)

 The example

 The script
 # !/bin/ksh ENV=dev MPATH=/tmp ## ### Man usage and co... USAGE="[- ?The example script v1.0]"
USAGE+="[-author ?Olivier Wulveryck]" USAGE+="[-copyright ?Copyright (C) My Blog]" USAGE+="[+NAME ?$0 ---
The Example Script]" USAGE+="[+DESCRIPTION ?The description of the script]" USAGE+="[u:user] :[user to run
the command as :=$USER ?Use the name of the user you want to sudo to :]" USAGE+="[e:env] :[environnement
:=$ENV ?environnement to use (eg : dev, prod)]" USAGE+="[p:path] :[Execution PATH :=$MPATH ?prefix of the
chroot]" USAGE+="[+EXAMPLE ?$0 action2]" USAGE+='[+SEE ALSO ?My Blog Post :
http://blog.owulveryck.info/2015/11/30/ksh93-cool-features-for-scripting]' USAGE+="[+BUGS ?A few, maybe...]" ###
Option Checking while getopts "$USAGE" optchar ; do case $optchar in u) USER=$OPTARG ; ; e) ENV=$OPTARG ;
; p) PATH=$OPTARG ; ; esac done shift OPTIND-1 ACTION=$1

 The invocation
Here are two singing examples of the usage output (sorry, I'm tired)

Ballad of a thin man
 $./blog.ksh â€”man NAME ./blog.ksh --- The Example Script SYNOPSIS ./blog.ksh [options] DESCRIPTION The
description of the script OPTIONS -u, â€”user=user to run the command as Use the name of the user you want to
sudo to : The default value is owulveryck. -e, â€”env=environnement environnement to use (eg : dev, prod) The
default value is dev. -p, â€”path=Execution PATH prefix of the chroot The default value is /tmp. EXAMPLE ./blog.ksh
action2 SEE ALSO My Blog Post : http://blog.owulveryck.info/2015/11/30/ksh93-cool-features-for-scripting BUGS A
few, maybe... IMPLEMENTATION version The example script v1.0 author Olivier Wulveryck copyright Copyright (C)
My Blog I'm gonna try with a little help (from my friends)

 $./blog.ksh â€”help Usage : ./blog.ksh [options] OPTIONS -u, â€”user=user to run the command as Use the name

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 4/5

https://xkcd.com/1343/
http://docstore.mik.ua/orelly/unix3/korn/appb_11.htm
http://shop.oreilly.com/product/9780596001957.do
http://blog.owulveryck.info/2015/11/30/ksh93-cool-features-for-scripting
http://blog.owulveryck.info/2015/11/30/ksh93-cool-features-for-scripting
http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

KSH93 cool features for scripting

of the user you want to sudo to : The default value is owulveryck. -e, â€”env=environnement environnement to use
(eg : dev, prod) The default value is dev. -p, â€”path=Execution PATH prefix of the chroot The default value is /tmp.

And let's try with an invalid option... ./blog.ksh -t ./blog.ksh : -t : unknown option Usage : ./blog.ksh [-u user to run the
command as] [-e environnement] [-p Execution PATH]

 Conclusion
By now, KSH93 remains my favorite engine for shell scripts, but is sometimes replaced by ZSH.

Actually, ZSH seems as "smart" and efficient, but this getopts feature is really nice for any script aim to be distributed
widely.

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 5/5

http://www.coincoin.fr.eu.org/?KSH93-cool-features-for-scripting-19840

