
Finding out what TLS/SSL cryptography people actually get with your servers

http://www.coincoin.fr.eu.org/?Finding-out-what-TLS-SSL

Finding out what TLS/SSL

cryptography people actually

get with your servers
- 6- Webographie - 

Date de mise en ligne : lundi 18 février 2013

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) - Tous droits réservés

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 1/3

http://www.coincoin.fr.eu.org/?Finding-out-what-TLS-SSL
http://www.coincoin.fr.eu.org/?Finding-out-what-TLS-SSL


Finding out what TLS/SSL cryptography people actually get with your servers

Finding out what TLS/SSL cryptographypeople actually get with your servers
One of my hobbies is slowly improving the SSL (okay, TLS) security
 settings on our various TLS-enabled servers, in pursuit of both better
 practical security with real clients and things like forward secrecy. In an ideal world things would come
 preconfigured with the best setups possible, but that doesn't always
 happen in the real world (note that
 those settings are from 2010, which means that they are now obsolete).
 Part of doing a good job of this is testing things to make sure that the
 server settings actually do what I want them to do, especially with real
 clients. There are so many SSL/TLS bits and it is easy to miss something
 or set configurations that look good but which will have no meaningful
 effect in the real world when you interact with real (and imperfect)
 clients. Sadly, this is more difficult than you would like. Much more
 difficult.

There are several things going on to get in the way. The first question
 is what cipher suites your server actually
 supports and what your specifications have turned into in practice. If
 you're using OpenSSL (as most people are) the way to find this out is
 with 'openssl ciphers -v <ciphers spec>'. As a bonus this will print
 out detailed information about each of the cipher suites, showing you
 the key exchange, certificate authentication, stream encryption, stream
 MAC, and which SSL/TLS standard things came from. This listing comes out
 in the server's preference order, most preferred first.

(If you want to see how your web server's TSL settings stack
 up in general, I quite like Qaulys's SSL Server Test. This doesn't help for internal web
 servers or for things like IMAP servers.)

There's an immediate gotcha for the unwary : the server
 preference often doesn't matter. In the TLS handshake the client
 gives the server a list of what cipher suites it supports, in its
 preference order, and servers usually defer to the client's
 preferences. You want to turn this off, forcing use of the server's
 preference order instead of the client's.

The next question is what cipher suites any particular client supports
 and what cipher suite was actually picked for a conversation (which is
 the real test). In an ideal world clients would tell you at least the
 latter (either natively or with an extension). In the real world, not
 so much ; many clients give you little or no information and you need go
 around behind their back to get it.

(For example Firefox won't tell you what key exchange was used for a

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 2/3

http://utcc.utoronto.ca/~cks/space/blog/tech/SSLForwardSecrecy
http://utcc.utoronto.ca/~cks/space/blog/web/ApacheSSLCipherSettings
http://utcc.utoronto.ca/~cks/space/blog/web/ApacheSSLCipherSettings
http://utcc.utoronto.ca/~cks/space/blog/tech/SSLCipherNames
https://www.ssllabs.com/ssltest/
http://blog.bjrn.se/2012/07/fun-with-tls-handshake.html
http://www.coincoin.fr.eu.org/?Finding-out-what-TLS-SSL


Finding out what TLS/SSL cryptography people actually get with your servers

 HTTPS connection, only what stream cipher is in effect for it (I'm
 pleased to see that modern versions of Chrome will tell you both), and
 I can't see how to get Thunderbird to tell me anything about a TLS
 protected IMAP connection.)

Fortunately the initial TLS handshake is mostly unencrypted, which means
 that we can snoop in on the conversation and see the client's list of
 supported cipher suites as well as the server's actual choice of cipher
 suite. If it works for you, the most convenient tool for doing this is
 ssldump. If it doesn't the best general
 tool for this is probably Wireshark, which has full TLS/SSL protocol
 decoding. In theory you can use tshark to dump this in ASCII from the
 command line ; in practice I haven't been able to get this working as
 nicely as the GUI.

(Since I already had to reconstruct this stuff from my cryptic notes
 once, it's clearly high time I wrote it down in a somewhat more
 comprehensible form.)

Sidebar : ssldump and Wireshark

I once had ssldump working, but these days all it does is dump the
 initial ClientHello message and then report 'ERROR: Length mismatch'.
 This is actually good enough if all you care about is knowing what
 cipher suites the client supports (and what its preference order is).

There is probably some clever way to use tshark options to display
 just the TLS parts of the packets, but at the moment the best I can do
 is :

 tshark -i INTERFACE -R ssl.handshake -V -p -n "host IP and port WHATEVER"

This unfortunately dumps a verbose decode of everything in the TLS
 handshake packets, from the raw frame on up.

If you want just the ClientHello and the ServerHello, you can use '

-R "ssl.handshake.type == 1 or ssl.handshake.type == 2"

'.

Cet article est repris du site http://utcc.utoronto.ca/~cks/space/...

Copyright © L'Imp'Rock Scénette (by @_daffyduke_) Page 3/3

http://www.rtfm.com/ssldump/
http://utcc.utoronto.ca/~cks/space/blog/sysadmin/ExaminingSSLHandshake
http://www.coincoin.fr.eu.org/?Finding-out-what-TLS-SSL

